3.810 \(\int \csc ^3(c+d x) \sec ^4(c+d x) (a+a \sin (c+d x))^2 \, dx\)

Optimal. Leaf size=125 \[ \frac {a^4 \cot (c+d x) \csc (c+d x)}{3 d (a-a \sin (c+d x))^2}-\frac {16 a^2 \cot (c+d x)}{3 d}-\frac {7 a^2 \tanh ^{-1}(\cos (c+d x))}{2 d}-\frac {7 a^2 \cot (c+d x) \csc (c+d x)}{2 d}+\frac {8 a^2 \cot (c+d x) \csc (c+d x)}{3 d (1-\sin (c+d x))} \]

[Out]

-7/2*a^2*arctanh(cos(d*x+c))/d-16/3*a^2*cot(d*x+c)/d-7/2*a^2*cot(d*x+c)*csc(d*x+c)/d+8/3*a^2*cot(d*x+c)*csc(d*
x+c)/d/(1-sin(d*x+c))+1/3*a^4*cot(d*x+c)*csc(d*x+c)/d/(a-a*sin(d*x+c))^2

________________________________________________________________________________________

Rubi [A]  time = 0.31, antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.276, Rules used = {2869, 2766, 2978, 2748, 3768, 3770, 3767, 8} \[ -\frac {16 a^2 \cot (c+d x)}{3 d}-\frac {7 a^2 \tanh ^{-1}(\cos (c+d x))}{2 d}-\frac {7 a^2 \cot (c+d x) \csc (c+d x)}{2 d}+\frac {a^4 \cot (c+d x) \csc (c+d x)}{3 d (a-a \sin (c+d x))^2}+\frac {8 a^2 \cot (c+d x) \csc (c+d x)}{3 d (1-\sin (c+d x))} \]

Antiderivative was successfully verified.

[In]

Int[Csc[c + d*x]^3*Sec[c + d*x]^4*(a + a*Sin[c + d*x])^2,x]

[Out]

(-7*a^2*ArcTanh[Cos[c + d*x]])/(2*d) - (16*a^2*Cot[c + d*x])/(3*d) - (7*a^2*Cot[c + d*x]*Csc[c + d*x])/(2*d) +
 (8*a^2*Cot[c + d*x]*Csc[c + d*x])/(3*d*(1 - Sin[c + d*x])) + (a^4*Cot[c + d*x]*Csc[c + d*x])/(3*d*(a - a*Sin[
c + d*x])^2)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2766

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dis
t[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[b*c*(m + 1) - a*d*
(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d,
0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (IntegersQ[2*m, 2*n] || (IntegerQ
[m] && EqQ[c, 0]))

Rule 2869

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(
m_), x_Symbol] :> Dist[a^(2*m), Int[(d*Sin[e + f*x])^n/(a - b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f,
 n}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, p] && EqQ[2*m + p, 0]

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \csc ^3(c+d x) \sec ^4(c+d x) (a+a \sin (c+d x))^2 \, dx &=a^4 \int \frac {\csc ^3(c+d x)}{(a-a \sin (c+d x))^2} \, dx\\ &=\frac {a^4 \cot (c+d x) \csc (c+d x)}{3 d (a-a \sin (c+d x))^2}+\frac {1}{3} a^2 \int \frac {\csc ^3(c+d x) (5 a+3 a \sin (c+d x))}{a-a \sin (c+d x)} \, dx\\ &=\frac {8 a^2 \cot (c+d x) \csc (c+d x)}{3 d (1-\sin (c+d x))}+\frac {a^4 \cot (c+d x) \csc (c+d x)}{3 d (a-a \sin (c+d x))^2}+\frac {1}{3} \int \csc ^3(c+d x) \left (21 a^2+16 a^2 \sin (c+d x)\right ) \, dx\\ &=\frac {8 a^2 \cot (c+d x) \csc (c+d x)}{3 d (1-\sin (c+d x))}+\frac {a^4 \cot (c+d x) \csc (c+d x)}{3 d (a-a \sin (c+d x))^2}+\frac {1}{3} \left (16 a^2\right ) \int \csc ^2(c+d x) \, dx+\left (7 a^2\right ) \int \csc ^3(c+d x) \, dx\\ &=-\frac {7 a^2 \cot (c+d x) \csc (c+d x)}{2 d}+\frac {8 a^2 \cot (c+d x) \csc (c+d x)}{3 d (1-\sin (c+d x))}+\frac {a^4 \cot (c+d x) \csc (c+d x)}{3 d (a-a \sin (c+d x))^2}+\frac {1}{2} \left (7 a^2\right ) \int \csc (c+d x) \, dx-\frac {\left (16 a^2\right ) \operatorname {Subst}(\int 1 \, dx,x,\cot (c+d x))}{3 d}\\ &=-\frac {7 a^2 \tanh ^{-1}(\cos (c+d x))}{2 d}-\frac {16 a^2 \cot (c+d x)}{3 d}-\frac {7 a^2 \cot (c+d x) \csc (c+d x)}{2 d}+\frac {8 a^2 \cot (c+d x) \csc (c+d x)}{3 d (1-\sin (c+d x))}+\frac {a^4 \cot (c+d x) \csc (c+d x)}{3 d (a-a \sin (c+d x))^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.99, size = 190, normalized size = 1.52 \[ \frac {a^2 \left (24 \tan \left (\frac {1}{2} (c+d x)\right )-24 \cot \left (\frac {1}{2} (c+d x)\right )-3 \csc ^2\left (\frac {1}{2} (c+d x)\right )+3 \sec ^2\left (\frac {1}{2} (c+d x)\right )+84 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )-84 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )+\frac {160 \sin \left (\frac {1}{2} (c+d x)\right )}{\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )}+\frac {16 \sin \left (\frac {1}{2} (c+d x)\right )}{\left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^3}+\frac {8}{\left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}\right )}{24 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[c + d*x]^3*Sec[c + d*x]^4*(a + a*Sin[c + d*x])^2,x]

[Out]

(a^2*(-24*Cot[(c + d*x)/2] - 3*Csc[(c + d*x)/2]^2 - 84*Log[Cos[(c + d*x)/2]] + 84*Log[Sin[(c + d*x)/2]] + 3*Se
c[(c + d*x)/2]^2 + 8/(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^2 + (16*Sin[(c + d*x)/2])/(Cos[(c + d*x)/2] - Sin[(
c + d*x)/2])^3 + (160*Sin[(c + d*x)/2])/(Cos[(c + d*x)/2] - Sin[(c + d*x)/2]) + 24*Tan[(c + d*x)/2]))/(24*d)

________________________________________________________________________________________

fricas [B]  time = 0.51, size = 428, normalized size = 3.42 \[ -\frac {64 \, a^{2} \cos \left (d x + c\right )^{4} + 86 \, a^{2} \cos \left (d x + c\right )^{3} - 54 \, a^{2} \cos \left (d x + c\right )^{2} - 80 \, a^{2} \cos \left (d x + c\right ) - 4 \, a^{2} + 21 \, {\left (a^{2} \cos \left (d x + c\right )^{4} - a^{2} \cos \left (d x + c\right )^{3} - 3 \, a^{2} \cos \left (d x + c\right )^{2} + a^{2} \cos \left (d x + c\right ) + 2 \, a^{2} + {\left (a^{2} \cos \left (d x + c\right )^{3} + 2 \, a^{2} \cos \left (d x + c\right )^{2} - a^{2} \cos \left (d x + c\right ) - 2 \, a^{2}\right )} \sin \left (d x + c\right )\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 21 \, {\left (a^{2} \cos \left (d x + c\right )^{4} - a^{2} \cos \left (d x + c\right )^{3} - 3 \, a^{2} \cos \left (d x + c\right )^{2} + a^{2} \cos \left (d x + c\right ) + 2 \, a^{2} + {\left (a^{2} \cos \left (d x + c\right )^{3} + 2 \, a^{2} \cos \left (d x + c\right )^{2} - a^{2} \cos \left (d x + c\right ) - 2 \, a^{2}\right )} \sin \left (d x + c\right )\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 2 \, {\left (32 \, a^{2} \cos \left (d x + c\right )^{3} - 11 \, a^{2} \cos \left (d x + c\right )^{2} - 38 \, a^{2} \cos \left (d x + c\right ) + 2 \, a^{2}\right )} \sin \left (d x + c\right )}{12 \, {\left (d \cos \left (d x + c\right )^{4} - d \cos \left (d x + c\right )^{3} - 3 \, d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right ) + {\left (d \cos \left (d x + c\right )^{3} + 2 \, d \cos \left (d x + c\right )^{2} - d \cos \left (d x + c\right ) - 2 \, d\right )} \sin \left (d x + c\right ) + 2 \, d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^3*sec(d*x+c)^4*(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/12*(64*a^2*cos(d*x + c)^4 + 86*a^2*cos(d*x + c)^3 - 54*a^2*cos(d*x + c)^2 - 80*a^2*cos(d*x + c) - 4*a^2 + 2
1*(a^2*cos(d*x + c)^4 - a^2*cos(d*x + c)^3 - 3*a^2*cos(d*x + c)^2 + a^2*cos(d*x + c) + 2*a^2 + (a^2*cos(d*x +
c)^3 + 2*a^2*cos(d*x + c)^2 - a^2*cos(d*x + c) - 2*a^2)*sin(d*x + c))*log(1/2*cos(d*x + c) + 1/2) - 21*(a^2*co
s(d*x + c)^4 - a^2*cos(d*x + c)^3 - 3*a^2*cos(d*x + c)^2 + a^2*cos(d*x + c) + 2*a^2 + (a^2*cos(d*x + c)^3 + 2*
a^2*cos(d*x + c)^2 - a^2*cos(d*x + c) - 2*a^2)*sin(d*x + c))*log(-1/2*cos(d*x + c) + 1/2) - 2*(32*a^2*cos(d*x
+ c)^3 - 11*a^2*cos(d*x + c)^2 - 38*a^2*cos(d*x + c) + 2*a^2)*sin(d*x + c))/(d*cos(d*x + c)^4 - d*cos(d*x + c)
^3 - 3*d*cos(d*x + c)^2 + d*cos(d*x + c) + (d*cos(d*x + c)^3 + 2*d*cos(d*x + c)^2 - d*cos(d*x + c) - 2*d)*sin(
d*x + c) + 2*d)

________________________________________________________________________________________

giac [A]  time = 0.25, size = 150, normalized size = 1.20 \[ \frac {3 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 84 \, a^{2} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) + 24 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \frac {3 \, {\left (42 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 8 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + a^{2}\right )}}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}} - \frac {16 \, {\left (12 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 21 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 11 \, a^{2}\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}^{3}}}{24 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^3*sec(d*x+c)^4*(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

1/24*(3*a^2*tan(1/2*d*x + 1/2*c)^2 + 84*a^2*log(abs(tan(1/2*d*x + 1/2*c))) + 24*a^2*tan(1/2*d*x + 1/2*c) - 3*(
42*a^2*tan(1/2*d*x + 1/2*c)^2 + 8*a^2*tan(1/2*d*x + 1/2*c) + a^2)/tan(1/2*d*x + 1/2*c)^2 - 16*(12*a^2*tan(1/2*
d*x + 1/2*c)^2 - 21*a^2*tan(1/2*d*x + 1/2*c) + 11*a^2)/(tan(1/2*d*x + 1/2*c) - 1)^3)/d

________________________________________________________________________________________

maple [A]  time = 0.71, size = 168, normalized size = 1.34 \[ \frac {a^{2}}{3 d \cos \left (d x +c \right )^{3}}+\frac {7 a^{2}}{2 d \cos \left (d x +c \right )}+\frac {7 a^{2} \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2 d}+\frac {2 a^{2}}{3 d \sin \left (d x +c \right ) \cos \left (d x +c \right )^{3}}+\frac {8 a^{2}}{3 d \sin \left (d x +c \right ) \cos \left (d x +c \right )}-\frac {16 a^{2} \cot \left (d x +c \right )}{3 d}+\frac {a^{2}}{3 d \sin \left (d x +c \right )^{2} \cos \left (d x +c \right )^{3}}-\frac {5 a^{2}}{6 d \sin \left (d x +c \right )^{2} \cos \left (d x +c \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(d*x+c)^3*sec(d*x+c)^4*(a+a*sin(d*x+c))^2,x)

[Out]

1/3/d*a^2/cos(d*x+c)^3+7/2/d*a^2/cos(d*x+c)+7/2/d*a^2*ln(csc(d*x+c)-cot(d*x+c))+2/3/d*a^2/sin(d*x+c)/cos(d*x+c
)^3+8/3/d*a^2/sin(d*x+c)/cos(d*x+c)-16/3*a^2*cot(d*x+c)/d+1/3/d*a^2/sin(d*x+c)^2/cos(d*x+c)^3-5/6/d*a^2/sin(d*
x+c)^2/cos(d*x+c)

________________________________________________________________________________________

maxima [A]  time = 0.33, size = 160, normalized size = 1.28 \[ \frac {8 \, {\left (\tan \left (d x + c\right )^{3} - \frac {3}{\tan \left (d x + c\right )} + 6 \, \tan \left (d x + c\right )\right )} a^{2} + a^{2} {\left (\frac {2 \, {\left (15 \, \cos \left (d x + c\right )^{4} - 10 \, \cos \left (d x + c\right )^{2} - 2\right )}}{\cos \left (d x + c\right )^{5} - \cos \left (d x + c\right )^{3}} - 15 \, \log \left (\cos \left (d x + c\right ) + 1\right ) + 15 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )} + 2 \, a^{2} {\left (\frac {2 \, {\left (3 \, \cos \left (d x + c\right )^{2} + 1\right )}}{\cos \left (d x + c\right )^{3}} - 3 \, \log \left (\cos \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )}}{12 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^3*sec(d*x+c)^4*(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

1/12*(8*(tan(d*x + c)^3 - 3/tan(d*x + c) + 6*tan(d*x + c))*a^2 + a^2*(2*(15*cos(d*x + c)^4 - 10*cos(d*x + c)^2
 - 2)/(cos(d*x + c)^5 - cos(d*x + c)^3) - 15*log(cos(d*x + c) + 1) + 15*log(cos(d*x + c) - 1)) + 2*a^2*(2*(3*c
os(d*x + c)^2 + 1)/cos(d*x + c)^3 - 3*log(cos(d*x + c) + 1) + 3*log(cos(d*x + c) - 1)))/d

________________________________________________________________________________________

mupad [B]  time = 9.07, size = 182, normalized size = 1.46 \[ \frac {a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,d}+\frac {7\,a^2\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{2\,d}-\frac {-36\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+\frac {135\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{2}-\frac {239\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{6}+\frac {5\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2}+\frac {a^2}{2}}{d\,\left (-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+12\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-12\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\right )}+\frac {a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(c + d*x))^2/(cos(c + d*x)^4*sin(c + d*x)^3),x)

[Out]

(a^2*tan(c/2 + (d*x)/2)^2)/(8*d) + (7*a^2*log(tan(c/2 + (d*x)/2)))/(2*d) - ((135*a^2*tan(c/2 + (d*x)/2)^3)/2 -
 (239*a^2*tan(c/2 + (d*x)/2)^2)/6 - 36*a^2*tan(c/2 + (d*x)/2)^4 + a^2/2 + (5*a^2*tan(c/2 + (d*x)/2))/2)/(d*(4*
tan(c/2 + (d*x)/2)^2 - 12*tan(c/2 + (d*x)/2)^3 + 12*tan(c/2 + (d*x)/2)^4 - 4*tan(c/2 + (d*x)/2)^5)) + (a^2*tan
(c/2 + (d*x)/2))/d

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)**3*sec(d*x+c)**4*(a+a*sin(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________